

expanding the realm of **POSSIBILITY**[®]

ROLLING WHEEL DEFLECTOMETER FOR ENHANCED PAVEMENT MANAGEMENT

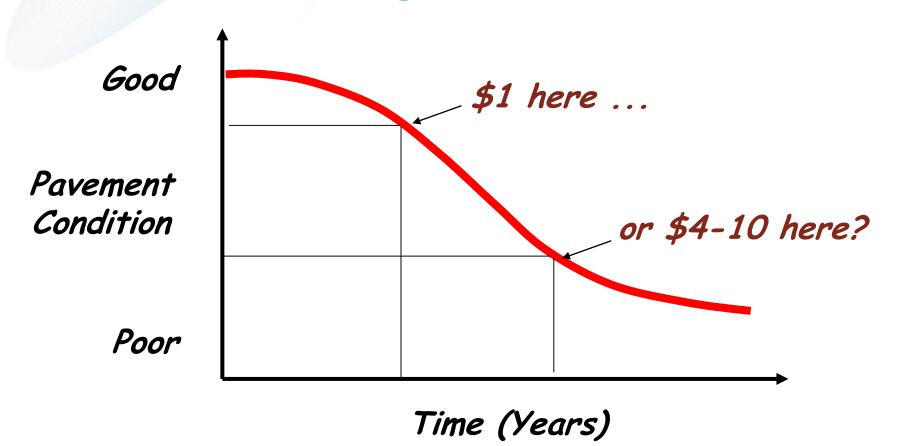
NYCHSA Summer Conference August 2017

Outline

Pavement Management Basics

POSSIBILIT

- Alternate Approaches to Pavement Management
- Structural Evaluation of Pavements



Why the Interest in Pavement Management?

- Pavement Infrastructure a Huge Investment
- Important to Preserve Investment
- Pavement Management Helps Develop Effective
 - **Pavement Preservation Program:**
 - ➢ Right Pavement
 - Right Treatment
 - ➢ Right Time

Fundamental Concept of Pavement Management

expanding the realm of **POSSIBILITY**®

Traditional Approach

Allows deterioration to fair to poor conditions
 Major rehabilitation or reconstruction required
 Clearly reactive, not as cost effective

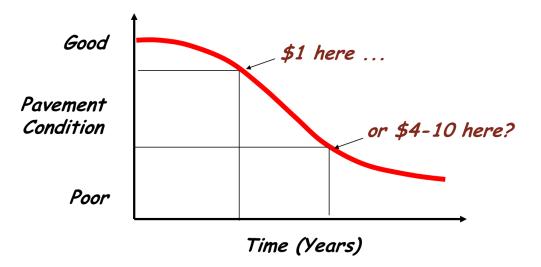
POSSIBILIT

Proactive Approach

Applies low-cost preventive treatments

⊕ 5 to 7 year life

POSSIBILITY


- Timing is critical
- Good Condition
- No structural damage

Pavement Management- a Tool to Help Proactively Plan

- Quantifies condition objectively
- Predicts condition (next few years)
- Helps identify optimal type & timing of treatment

expanding the realm of **POSSIBILITY*** **Basic Elements of a PMS** Compare to Condition M&R Total Needs M&R Plan & Funds Database Prioritization & Costs Survey Selections Budget Available Performance Prediction

Alternative Approaches to Pavement Management

Pavement Condition Assessment

- Windshield Survey
- Semi-Automated Survey
- Automated Survey

Determination of Maintenance & Rehabilitation (M&R) Needs

- Road Surface Management System (RSMS)
- Paver
- Proprietary Software

Step 1-Pavement Condition Assessment

- Backbone of the Pavement Management System
- Decide what data will be collected
 - Collect only what will be used

POSSIBILIT

Decide how the data will be collected

Consideration of Condition Data to Collect

Ride Quality

expanding the realm o POSSIBILITY

- Surface Condition
- Structural Condition

Condition Assessment

Surface condition

POSSIBILIT

- PASER (simple 1-10 ratings)
- RSMS (limited # of common distresses)
- PCI (detailed distresses)

Other optional assessments

- Ride quality (smoothness)
- Structural capacity

Overall condition rating determined based on above data

Data collected & summarized for each pavement management "segment"

PASER Rating

Ratings are related to needed maintenance or repair

- Rating 9 & 10: No maintenance required
- Rating 8: Little or no maintenance
- Rating 7: Routine maintenance

POSSIBILITY

- Rating 5 & 6: Preservative treatments
- Rating 3 & 4: Structural improvement and leveling
- Rating 1 & 2: Reconstruction

PASER Rating

Detailed Surface Condition Assessment

Distress type, quantity, severity

Primary distress types

- Alligator cracking
- Longitudinal & transverse cracking (L&T)
- Edge cracking (especially rural roads)
- Rutting

expanding the realm of POSSIBILITY

- Potholes
- Weathering/raveling

Overall condition rating

Condition Methodology Selection Criteria

Consider Repeatability

- Different inspectors
- Year to year

expanding the realm of **POSSIBILITY**[®]

Consider Collection method

- Safety
- Time
- Equipment
- Required skills

Consider Components included

Condition Evaluation Alternatives

Foot on Ground

expanding the realm o POSSIBILITY

- Windshield Survey
- Semi- automated equipment
- Automated equipment

Foot on Ground Method

Pros:

expanding the realm of **POSSIBILITY**[®]

- > Any inspector can be trained
- Equipment requirements minimal

Cons:

- > Safety
- ➤ Time
- > Cost
- QC Difficult
- Suitable for small network



Condition Survey Methods – Windshield

expanding the realm of POSSIBILITY

- Estimate distress type, quantity, severity
 - Quantity (square feet, lineal feet or L, M, H extent)
- "Event Board" useful

Windshield Survey Method

Pros:

- Simple equipment
- ≻ Time

expanding the realm of **POSSIBILITY**®

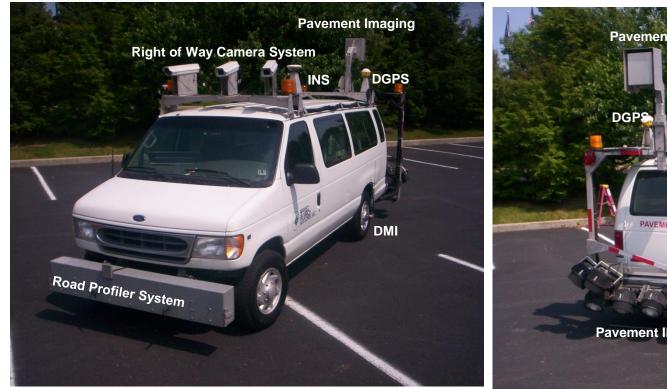
Cost

Cons:

- Accuracy depends on inspector
- Location of distresses not captured
- QC difficult
- Details not easily visible

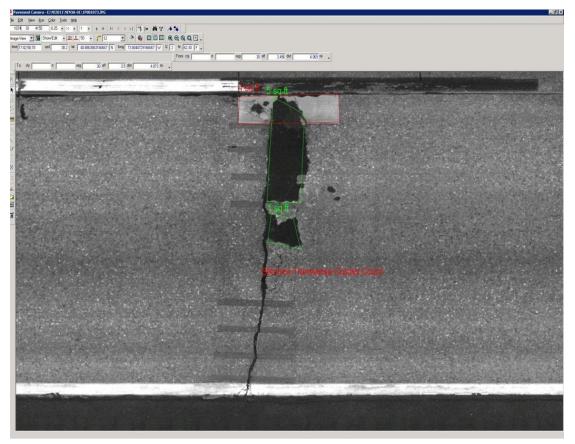
Semi-Automated Data Collection Digital Survey Vehicle (DSV)

Data Collected


POSSIBILITY

- Digital Video Pavement Images
- Multiple Right-of-Way Images
- Longitudinal
 Profile/Roughness
- Rutting & Faulting
- Cross-slope & Grade
- Macro-Texture
- Linear Distance
- GPS Coordinates

DSV Survey Systems


expanding the realm of **POSSIBILITY***

Office Condition Survey Using DSV Images

High resolution downward pavement images viewed with customized software

expanding the realm of POSSIBILITY®

Pros & Cons of DSV

Pros:

Safety

expanding the realm of **POSSIBILITY**®

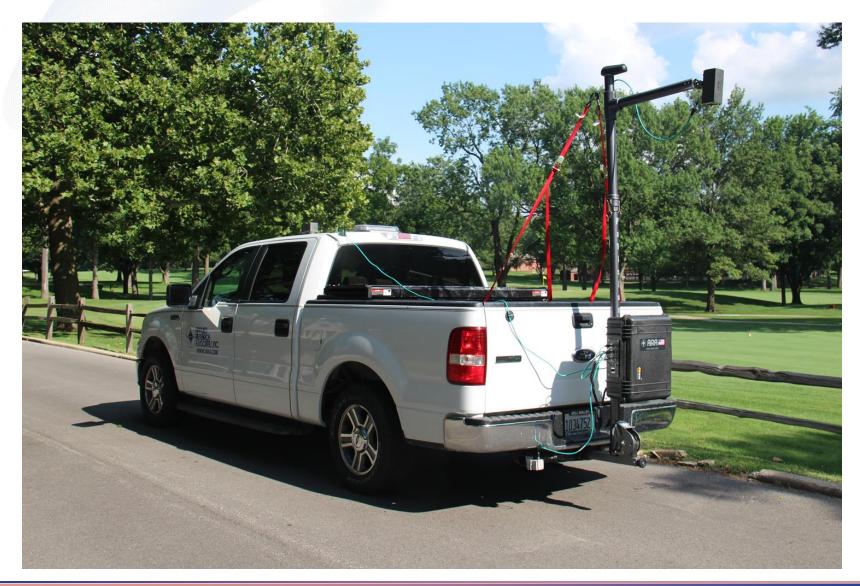
- ≻ Time
- Easiest to QC
- Additional data
 - Video Log
 - Ride Quality
 - Automated Rutting
 - Automated Faulting
- Cons:
 - Cost
 - Consultant required to perform work

Pa vision-Simplified Approach

- Highly portable
- Easy to use

expanding the realm of POSSIBILITY

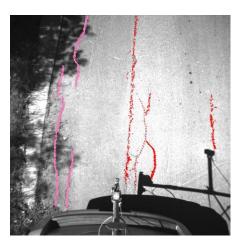
- Multiple camera views
- Cloud based storage and processing
- Automated pavement distress detection available


Case 1: Electronics

Case 2: Hardware

expanding the realm of **POSSIBILITY***

Pa vision


- Pavement imagery
- > Roughness

expanding the realm of **POSSIBILITY**⁴

Distress Quantities

Forward Image

Automated Distress Analysis

Proprietary analysis of images correlated to distress types

Advantages & Disadvantages of PaVision

Advantages:

expanding the realm of **POSSIBILITY**®

- Safety
- Time
- Highly automated
- > Inexpensive

Disadvantages:

Less accurate distress identification

Overall Condition Rating

- Provides overall assessment of each section
- Allows comparison between sections

Provides network level assessments

> Examples:

POSSIBILIT

- > Average condition of arterial streets, local subdivision streets, etc
- Trends over time

Many Condition Rating Methods Available

	PASER	Pavement Condition Index (PCI)	RSMS
Туре	Subjective	Rigorous Objective	Simplified Objective
Scale	10 - 1	100 - 0	100 - 0
Consider Smoothness	Subjective	NO (Supplemental)	NO (Supplemental)
Differentiate Distress Mechanism	NO	YES	YES
Individual Distresses	Subjective	19 Distresses by Severity & Quantity	Reduced Distress/ Quantity Options
Cost to collect	\$	\$\$\$\$	\$\$\$

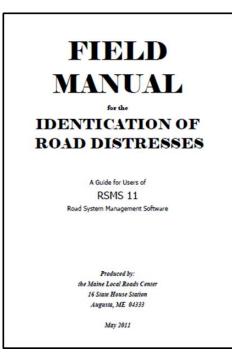
Pavement Condition Index (PCI)

Based on surface distresses

- Type, quantity, severity
- 19 distress types

expanding the realm of **POSSIBILITY**

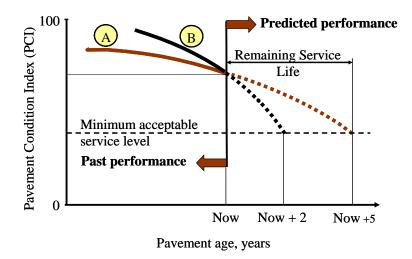
- Each distress has an associated deduct curve
- Provides an overall condition number
- Repeatable within 5 points, with
 95 percent confidence
- Conducted in accordance with ASTM Standard D 6433


RSMS

Based on surface distresses

- > Type, quantity, severity
- 7 distress types

expanding the realm of POSSIBILITY®



Step 2- Performance Prediction

Typical planning period = 5 yrs

expanding the realm of **POSSIBILITY**[®]

- Need to predict future conditions
- Several methods (many based on "family modeling")

Step 3- Identification of Needs

Identify needs based on:

Distress data

expanding the realm of **POSSIBILITY**[®]

- performance predictions
- criteria built into PMS software

Oriteria based on 3 concepts:

- Maintenance policies
- Level of service
- Trigger values

Step 3- Identification of Needs

MicroPaver identifies 2 levels of needs:

Localized maintenance & repair

- Year 1-specific treatments based on distresses
- Future years- \$ based on PCI ranges

Global treatments

POSSIBILITY

• unit \$ based on PCI level

Step 3- Identification of Needs

RSMS identifies 2 levels of needs:

6 Broad Strategies

expanding the realm of POSSIBILITY

- Defer Maintenance
- Routine Maintenance
- Preventive Maintenance
- Corrective Maintenance
- Rehab/Reconstruction

Specific Treatments Within Each Strategy

- Examples for Preventive Maintenance:
 - ✓ Slurry Seal
 - ✓ Chip Seal
 - ✓ Thin Over<u>lay</u>

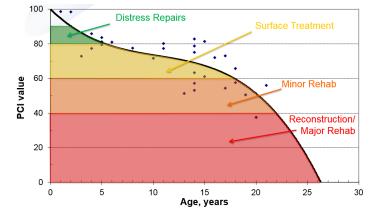
M&R Assignments Based on Surface Condition Alone Can Be Misleading

Consider 2 Similar Looking Pavements

- A. Recent Chip Seal Over Hot Mix Asphalt
- ➢ B. Multiple Layers of Chip Seal

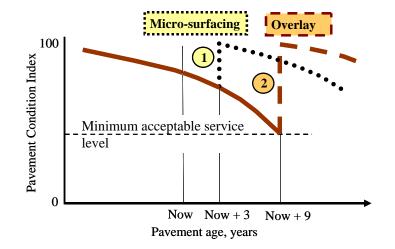
Same Surface Condition

POSSIBILIT


Light Alligator Cracking; Isolated Areas Medium & Heavy Alligator

2 Very Different Structural Capacities But Same PCI

M&R Treatments


PCI of 60, PMS software identifies new Chip Seal or Thin Overlay

Resets PCI to 100

expanding the realm of **POSSIBILITY**[®]

as Treatment

Same Treatment Not Appropriate For Both Pavements

Pavement A- structurally adequate

Isolated patching of weak areas & thin surface treatment viable

POSSIBILIT

Pavement B- structurally inadequate

- Thin surface treatment to fail in few years (not cost effective)
- Strengthening required (eg.- thick overlay or FDR & overlay)

Provides indication of overall health (adequacy) of road network

Distinguish between roads

POSSIBILITY

- Those with significant "remaining life"
- Those with very little "remaining life"

Road Name	Avg Daily	Equivalent	Structural Capacity	Number Years	
	Traffic	(ESALs/Year)	(ESALs)	Life Remaining	
Co. Route 5	5,527	201,736	1,049,025	5.2	
Co Route 28	6,920	250,222	850,755	3.4	
Co Route 20	11,125	396,112	2,812,395	7.1	
Co Route 63	500	18,100	226,250	12.5	
Co Route 31	1,200	42,100	463,100	11	

Structural Evaluation of Pavements

Structural capacity- measure of ability to carry repeating load over time (ESALs to failure)

Affected by following factors:

- Initial pavement structure and subgrade (thickness & quality)
- Magnitude of applied loads
- Environmental factors (moisture, temperature, freeze-thaw)
- Maintenance

POSSIBILITY

Decreases with time

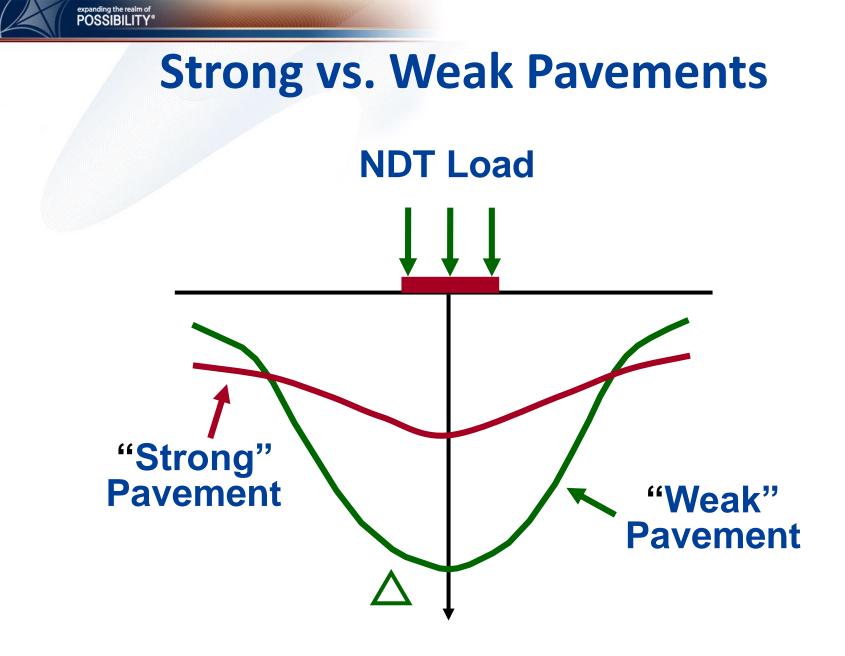
Structural Evaluation of Pavements Traditional (Destructive) Testing

Conventional cores & borings

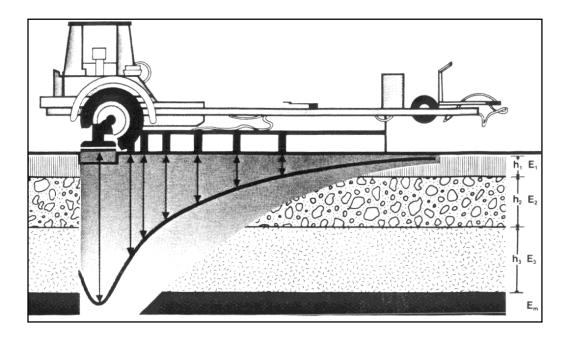
expanding the realm of POSSIBILITY

Cone Penetrometer Testing (CPT)

Structural Evaluation of Pavements (Traditional Non- Destructive Methods)


Benkelman beam testing

Falling Weight Deflectometer testing



FWD Schematic

Weight dropped on load plate

- Deflection measured at series of sensors
- Analysis of "deflection basin" provide strength of pavement layers (asphalt, granular subbase, subgrade soil)

FWD Test Production

⊕ 200 – 300 test points per day

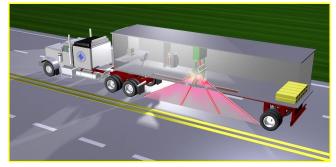
- Significantly more than feasible number of borings & cores
- Requires traffic control (shadow vehicle or flaggers)

Rolling Wheel Deflectomater (RWD)

System

expanding the realm of POSSIBILITY

Laser-based system


➢18-kip, single-axle, dual-tire

Operation

- Operates at posted speeds
- ➢No lane closures

Measurements

- ➤Continuous deflection measurement
- >Averages deflections over 0.1-mile intervals
- ➤Spatially-coincident method

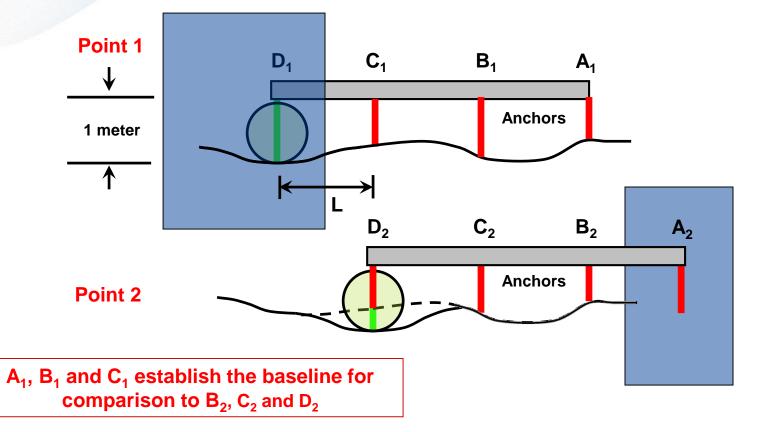
Key Design Features

Trailer

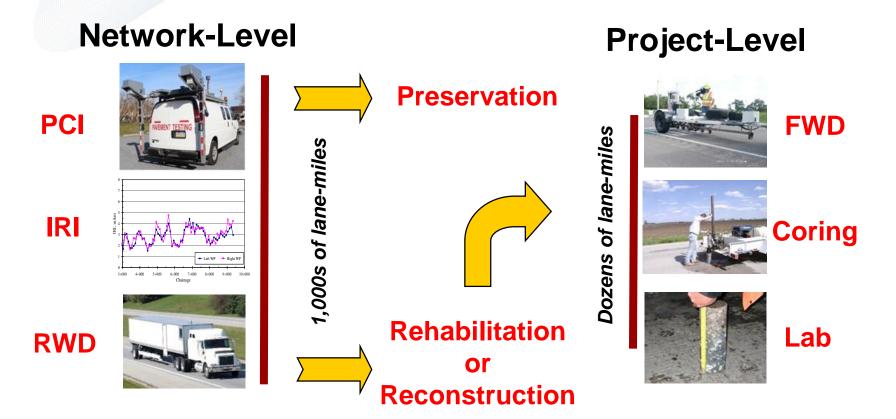
expanding the realm of **POSSIBILITY**®

- Lasers Calibration
- Wheels
- Beam
- Software •

٠


Reference beam and spot lasers

Laser between dual tires



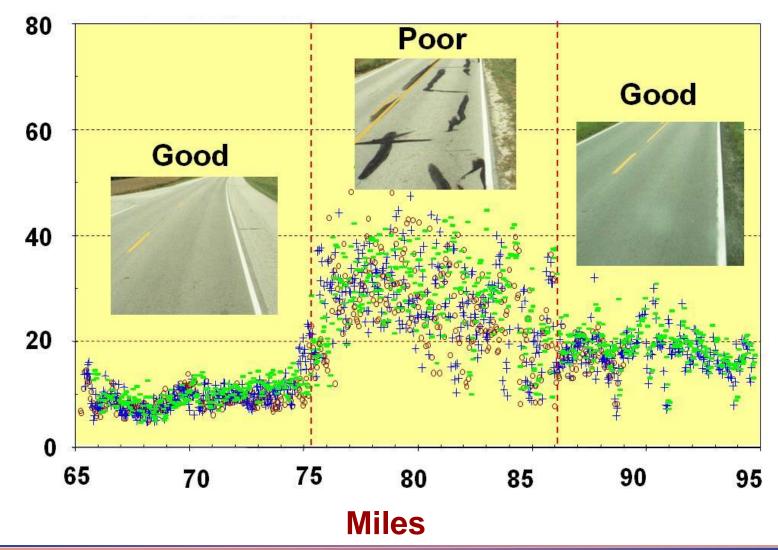
Spatially Coincident Methodology

RWD Role in Pavement Management

How Can The RWD Be Used?

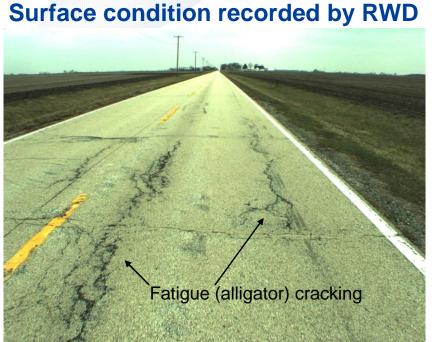
Applications

POSSIBILIT

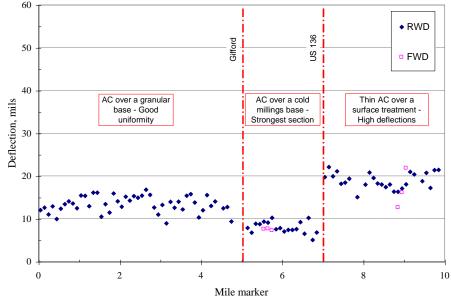

- > Network-level evaluation (PMS)
- > Pre-screener for focusing project-level efforts (evaluation/design)

Limitations

- > Currently, maximum deflection only
- > Lack of "deflection basin" limits analysis
- > Accuracy is suitable for network-level analysis, but not detailed engineering analysis


Example Structural Classification

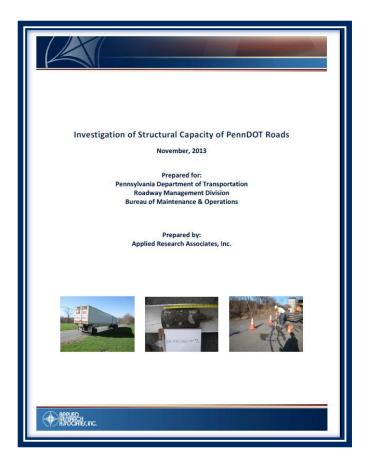
Pavement Conditions


Percent of Network

expanding the realm of **POSSIBILITY**®

	Good	Fair	Poor
PCI	59	26	15
RWD	57	15	28
IRI	85	10	5

RWD identifies structural changes



PennDOT Study - Compared 3 Methods of Structural Evaluation

RWD testing of 278 miles

FWD testing & pavement coring for 16 test segments

Compared estimates of "structural number" based on RWD, FWD & RMS estimates

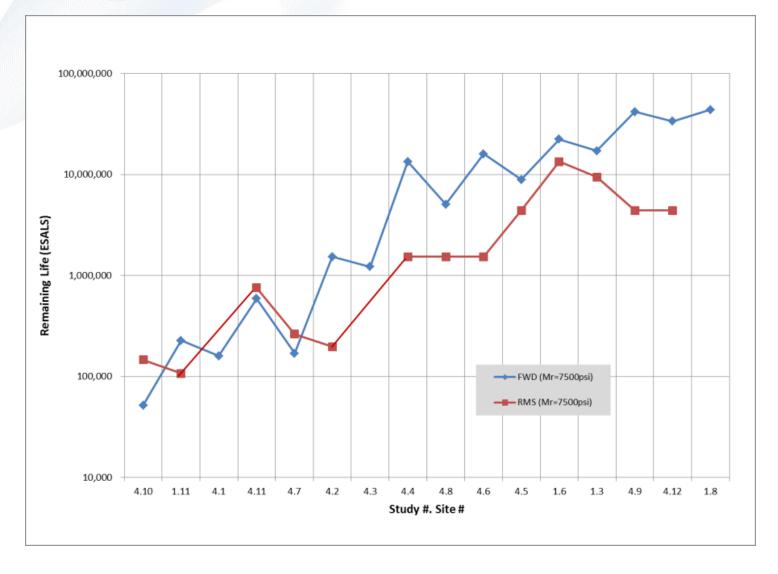
Structural Capacity

Commonly expressed in terms of:

Structural number (accounts for thickness & contributing strength from each pavement layer)
 Remaining life obtained from "effective SN"

POSSIBILITY

Structural Number (SN) Determinations


● FWD:

Direct output from model (backcalculations)

RWD: Determined remaining pavement life (not SN directly)

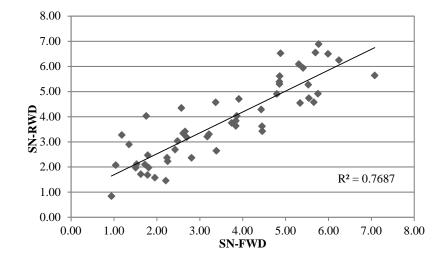
Results From PennDOT Study

Louisiana DOT Study by LSU

- 2009 Study led by Mostafa Elseifi (LSU)
- Developed model to predict SN from RWD data
 - Based on RWD & FWD data from LA DOT test sites- 16 sites, 1.5 mi each

$$SN_{RWD} = -6.37 - \frac{150.69 * RI^{-0.81}}{RI + 19.04} + 23.52 * RWD^{-0.24} - 1.39 * \ln(SD)$$

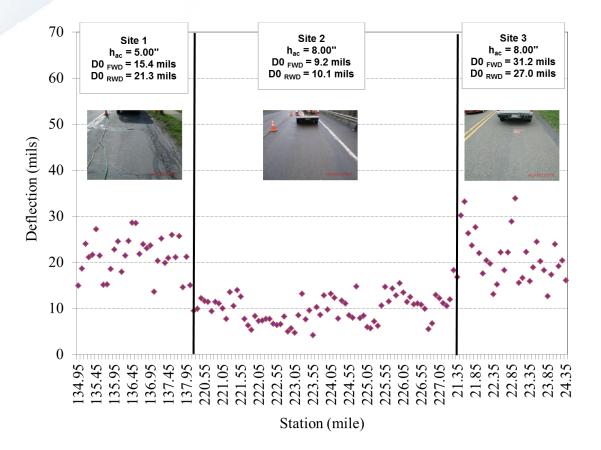
RI = RWD Index (mils²) = Avg. RWD deflection * SD of RWD deflection; SD = standard deviation of RWD deflection on a road segment (mils); RWD = Avg. RWD deflection measured on a road segment (mils); and


POSSIBILIT

LSU Model Accuracy

- LSU model tested with PennDOT RWD data
- Accuracy deemed acceptable

expanding the realm of **POSSIBILITY**[®]


• Coefficient of Determination, R^{2 =} 0.77

Relationships between SN based on FWD and SN based on RWD for the Independent Network Sites

RWD Deflection Variability & Pavement Strength

From Elseifi et al 2014

FHWA Case Study - Oklahoma

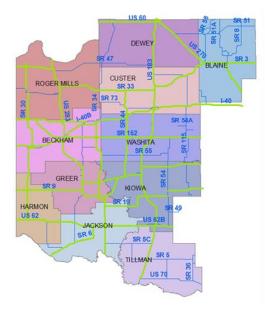
- Evaluate the benefits of integrating RWD data into PMS
- Compare results with and without RWD data
 - Treatment selection
 - Costs

expanding the realm of POSSIBILITY

Network performance

© 2016 Applied Research Associates, Inc

Test Roads


Test Network

expanding the realm of **POSSIBILITY**[®]

- ≻1,000 miles (ODOT D-5)
- Primarily flexible pavements
- ➢Wide range of functional classifications/traffic

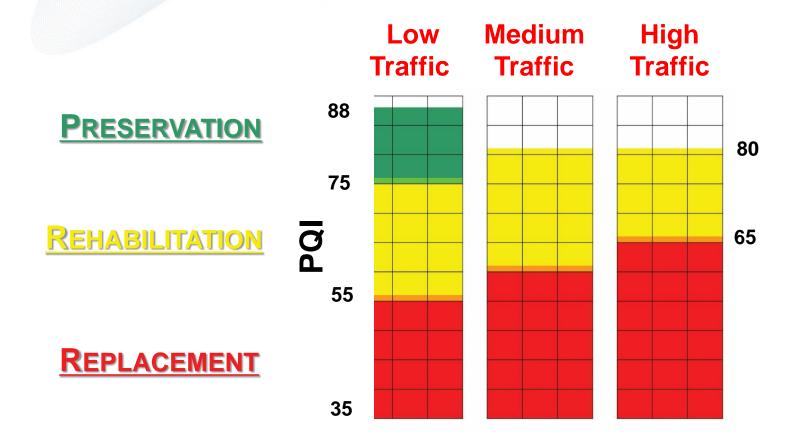
Data Collection

- Continuous data collection
- Averaged data at 0.1-mile intervals
- ➤Testing duration: 4.5 days

Approach

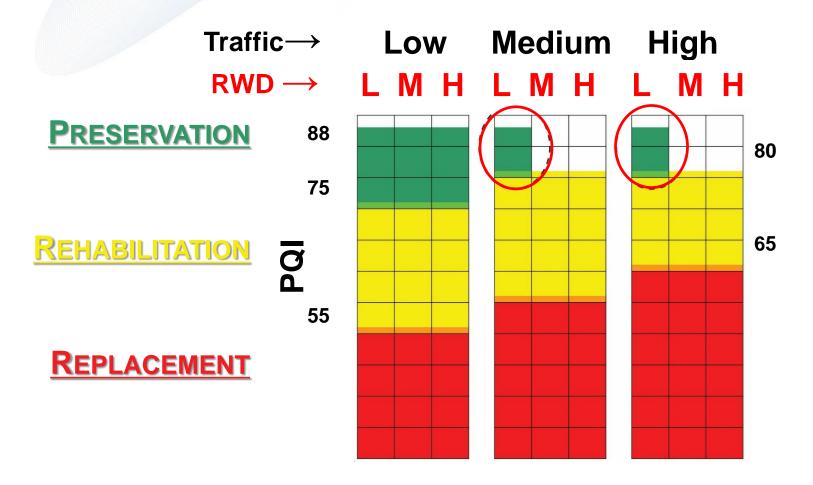
- ➢ Base strategy: PQI only
- ➤Two modified strategies: add RWD data

Compare results


➢Costs

expanding the realm of **POSSIBILITY**[®]

➢ Performance (in terms of PQI)

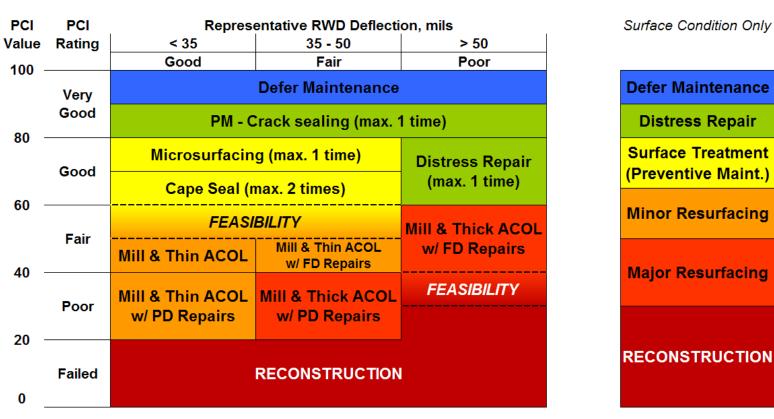


PQI Only – Treatment Matrix

RWD #1 – Treatment Matrix

RWD #2 – Treatment Matrix Low Medium High Traffic→ $RWD \rightarrow LMH LMH LMH$ 88 **PRESERVATION** 80 75 60 **REHABILITATION** 65 55 I REPLACEMENT 45

Results


Pudget Seenerie	Percent change in cost (relative to "PQI Only" base case)			
Budget Scenario	PQI Only	RWD Option 1	RWD Option 2	
Target PQI = 92	0.0%	-10.6 %	-11.5 %	

expanding the realm of **POSSIBILITY***

© 2016 Applied Research Associates, Inc.

Decision Matrix Developed for Illinois Counties

SURFACE AND STRUCTURAL CONDITION

Structural Data allows you to choose the *right* project at the *right* time!

expanding the realm of **POSSIBILITY**[®]

TRADITIONAL

More Detailed Decision Matrix

Low Truck Traffic

High Truck Traffic

	nigii Truck Trainc			Low Truck Trainc			
PCI	PCI	D	esign RWD Deflection, mi	ils	Design RWD Deflection, mils		
Value	Rating	< 35 Good	35 - 50 Fair	> 50 Poor	< 45 Good	45 - 75 Fair	> 75 Poor
100	Very Good	Defer Maintenance			Defer Maintenance		
80 -	Very Good	Crack sealing (maximum 1 time)			Crack sealing (maximum 1 time)		
	Good	Microsurfacing (maximum 1 times) Cape Seal (maximum 1 times)	Distress Repair & Cra	ack Seal (max 2 time)	Chip seal, (maximum 2 times)	Double Chip Seal (maximum 2 times)	Defer Improvements
60	Fair	Mill 2 - Replace 2	Mill 2 - Replace 3	Mill 2 - Patch - Replace 4	Double Chip Seal (maximum 2 times)	Mill 2 - Replace 3	Mill 2 - Patch - Replace 4
40 -	Poor	Mill 3 - Replace 3	Mill 3 - Patch - Replace 4	Mill 3 - Patch - Replace 5	Mill 2 - Replace 2	Mill 3 - Patch - Replace 4	
20 · 0 ·	Failed	Reconstruction (FDR, Rubblize, CIR)			Mill 3 - Patch - Replace 4	Reconstruction (FDR, Rubblize, CIR)	

Conclusions

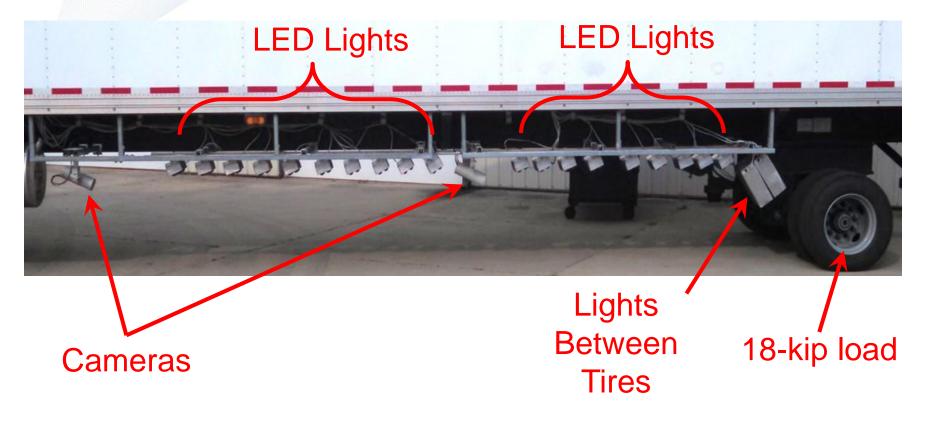
RWD allows broader, more reliable use of pavement preservation

- >Identifies roads in GOOD & FAIR structural condition
- Prevent heavy loads on roads in POOR structural condition

Cost savings can be significant

- ➢In the range of 5 to 10%, in many cases
- > Depends on agency's current strategy and road conditions

POSSIBILIT


Recent Advancements in RWD Technology

© 2016 Applied Research Associates, Inc

Copyright 2010. All rights reserved. Applied Research Associates, Inc.

RWD-Vision (cameras vs lasers)

Description

Image-based

expanding the realm of POSSIBILITY

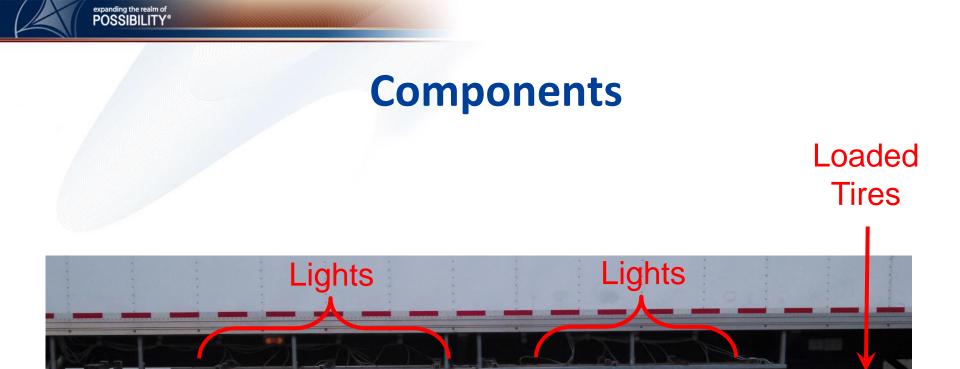
- Overlaps two spatially coincident, high-resolution images
- First image, undeflected area only. Second image, mainly the deflection basin with small undeflected area

Lighting

- High-speed flashes, overcome shadows from ambient lighting
- Synchronized with high-speed cameras

Benefits

Data Quality


expanding the realm of POSSIBILITY

- Provides entire basin in front of the RWD wheel (instead of maximum deflection only)
- Accuracy of individual deflections is much higher than laser system (may not require averaging)

Operational

- Does not require a thermal chamber to maintain constant temperature
- > Potential to be installed on a shorter trailer with lighter weight tow vehicle

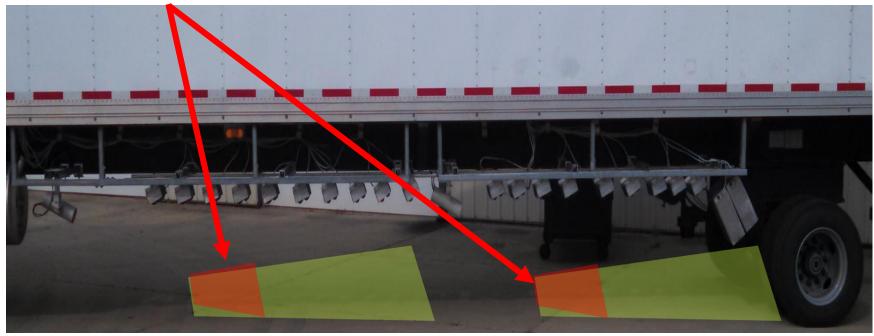
2000

Lights Between Tires

Components, cont.

Right Wheel Path Laser RWD Left Wheel Path Image Based RWD (Shown)

- High Speed LED based Flash
- 2 Camera Positions
- Concentration of Light Between Tires

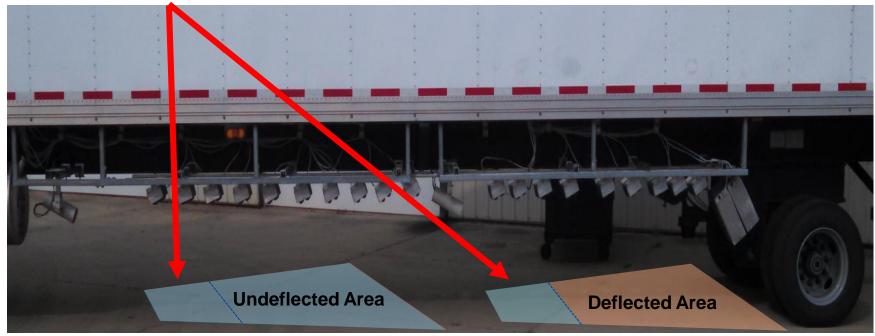


expanding the realm of **POSSIBILITY***

Method

- 1. Forward camera takes image of non deflected region
- 2. RWD moves forward so that same region of pavement is under load
- 3. Camera 2 takes picture of deflected area
- 4. Images are processed to compute complete deflection around tire

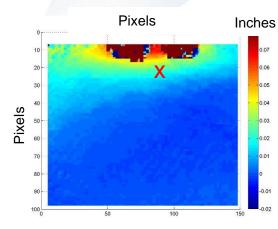
Overlapping area of no deflection (both images)



expanding the realm of POSSIBILITY

Method

- 1. Forward camera takes image of non deflected region
- 2. RWD moves forward so that same region of pavement is under load
- 3. Camera 2 takes picture of deflected area
- 4. Images are processed to compute complete deflection around tire


Overlapping area of no deflection (both images)

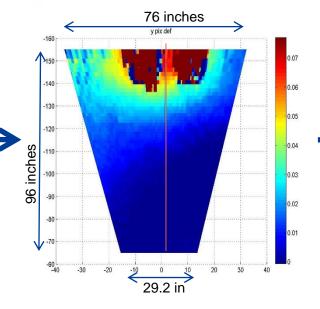
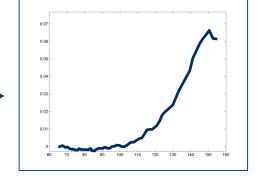
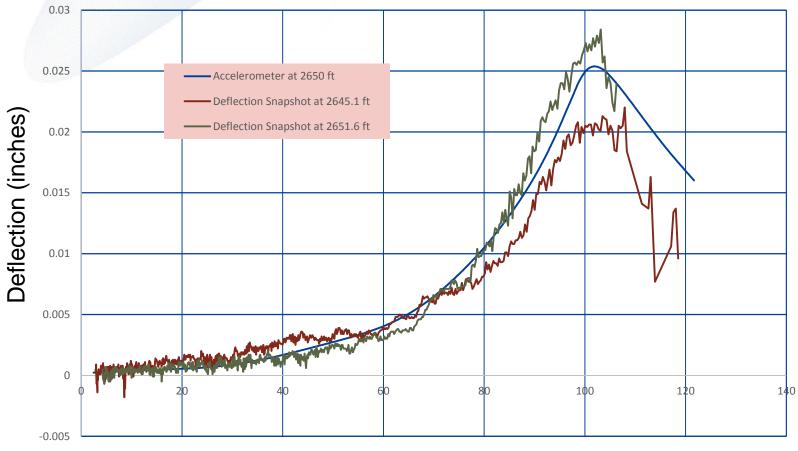

expanding the realm of POSSIBILITY

Image Processing



expanding the realm of **POSSIBILITY***

RWD-Vision deflection measurements (in camera images)


RWD-Vision deflection contour (on pavement surface) Area = 3.9 ft²

RWD-Vision deflection profile along wheel path centerline

Full Basin

Relative Position Along Road (inches)*

expanding the realm of **POSSIBILITY***

Summary

• PMS a tool to improve cost- effectiveness of M&R program

Several alternatives to PMS implementation

- Extent of data collected
- Methods of data collection
- PMS software

expanding the realm of POSSIBILITY

Pavement Management decisions enhanced if structural strength incorporated

Summary (cont'd)

- Traditionally obtaining structural data on County-wide basis not economically feasible
- Innovative RWD provides cost effective means to obtain network level structural data
 - > Laser based RWD has proven reliable & accurate enough at network level
 - New vision based RWD provides "deflection basin" that allows more detailed analysis

POSSIBILITY

Questions???

Contact Information: Paul Wilke, P.E., Principal Engineer <u>pwilke@ara.com</u> Ph: 717-975-3550

expanding the realm of **POSSIBILITY***

① 1. A pavement management system can:

- > A) quantify pavement conditions objectively
- > B) determine an overall condition rating for a specific road
- > C) determine an overall condition rating for an entire road network
- D) predict condition ratings in future years
- E) determine optimum time for M&R treatments
- ➢ F) all of the above

expanding the realm of POSSIBILITY

• 2. Which data collection method provides the most accurate data?

- > A) Foot on ground survey
- B) Windshield survey
- C) Digital survey vehicle
- D) Pa Vision

expanding the realm of **POSSIBILITY**[®]

- > A) Foot on ground survey
- B) Windshield survey
- > C) Digital survey vehicle
- > D) Pa Vision

expanding the realm of **POSSIBILITY**[®]

> E) Depends on size of network

- > A) Foot on ground survey
- ➢ B) Windshield survey
- C) Digital survey vehicle
- D) Pa Vision

expanding the realm of **POSSIBILITY**[®]

- S. Why can surface condition be misleading when comparing different roads for pavement management decision making ?
 - A) Pavement composition may be different for 2 identical looking pavement surfaces
 - B) Pavement strength may be different for 2 identical looking pavement surfaces
 - C) Deterioration of underlying layers is not seen
 - D) None of the above
 - ► E) All of the above

expanding the realm of POSSIBILITY

 ● 6. Which of the following can determine a pavement's structural capacity:

- > A) Cores and borings
- ➢ B) Falling weight deflectometer
- C) Digital survey vehicle
- > D) PaVision

expanding the realm of POSSIBILITY

➢ E) Rolling wheel deflectometer

> A) Falling weight deflectometer

expanding the realm of POSSIBILITY

B) Rolling wheel deflectometer

8. Which tool is most suited for use on a County-wide (network) basis?

> A) Falling weight deflectometer

expanding the realm of POSSIBILITY

➢ B) Rolling wheel deflectometer

> A) Falling weight deflectometer

expanding the realm of **POSSIBILITY**®

➢ B) Rolling wheel deflectometer

✤ 10. Use of RWD data can improve pavement M&R decisions by:

- A) Distinguishing between 2 similar looking pavements that have different structural capacity
- B) Lowering the cost of overlays

POSSIBILIT

- C) Deferring treatment on pavements in fair condition that are structurally inadequate
- > D) Adding confidence that a preservation technique is economically viable
- E) Can decrease the overall cost of a County-wide M&R program

