Thickness Design of Low-Volume Road Pavement

New York State LTAP Center - Cornell Local Roads Program David P. Orr, PE, Summer 2021

The NYS LTAP Center - Cornell Local Roads Program developed a new tool to design the thickness of low volume road (LVR) pavements up to 2,000 vehicles per day. This spreadsheet-based tool uses modern mechanistic-empirical methods, but requires only inputs that are typically known by the local pavement engineer or highway official or are obtainable for a reasonable cost. This session will review the critical inputs needed for LVR pavement design and discuss ways for local agencies to design the thickness of their LVRs including the new RoadPE: LHI software.

Resources

Manual: Guidelines for Rural Town and County Roads (pdf),

https://cornell.box.com/clrp-pb-mgrtcr

Highway Standards for Low-Volume Roads in New York State (pdf), https://cornell.box.com/clrp-pb-hslvrnys

NYSDOT Pavement Models

http://www.clrp.cornell.edu/SeasonalProject/NYSDOTSeasonalHome.htm

Low-Volume Road Thickness: RoadPE: LHI Design Tool

https://www.clrp.cornell.edu/researchprojects/RoadPE_LHI.html

NYSDOT Highway Design Manual

https://www.dot.ny.gov/divisions/engineering/design/dqab/hdm

NYSDOT Comprehensive Pavement Design Manual

https://www.dot.ny.gov/divisions/engineering/design/dqab/cpdm

AASHTO -

American Association of State Highway and Transportation Officials https://www.transportation.org/

- - Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, 2nd Edition
 - AASHTO Guide for Design of Pavement Structures, 4th Edition with 1998 Supplement
 - A Policy on Geometric Design of Highways and Streets, 7th Edition
 - Guidelines for Geometric Design of Low-Volume Roads, 2nd Edition

RoadPE: LHI - Low-volume Highway Inputs for Pavement Design

Location:	
Route:	
Designer:	
Date:	

	Existing Pavement		
Layer	Layer type	Thickness	
#		in	
1			
2			
3		00	(
Drainage Quality			Go
Age of current pavement (last major work)			yea

Input all known data.

 Blue cells must be filled out.

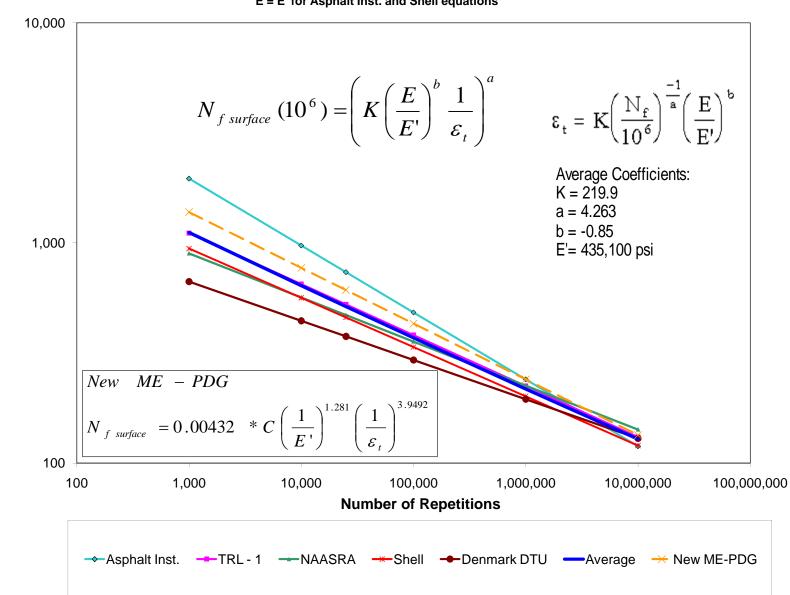
 Green cells are drop down list to be chosen by the user.

 Yellow cells are optional inputs.

 Purple cells are defaults that may be changed by the user.

 Orange cells are calculated.

Cold Mix Asphalt, Gravel surface, Hot Mix Asphalt


Crushed gravel/stone (clean), Dirty unbound base (wet), Stabilized, Uncrushed gravel (clean) Clayey subgrade, Gravelly subgrade, Sandy subgrade, Silty subgrade

Good, Fair, Poor

Site Inputs					
Seasonal Inputs		Winter	Thaw	Spring	Summer
	Length of Season (days)				
	Avg. Air Temperature (°F)				

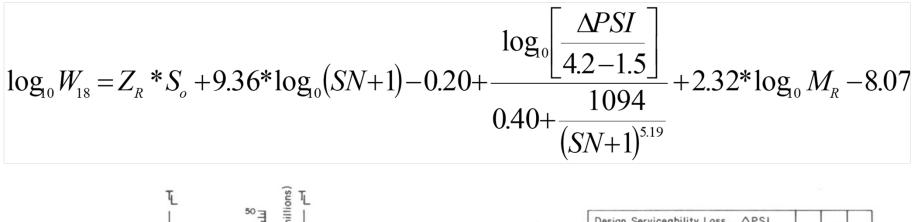
Traffic		
Deisgn Life		year
Current vehciles / day		vehicles per day
Growth Rate	1.0%	NYSDOT Default = 1%
 Traffic Type		Standard LVR, Agricultural, Industrial, Residential, Commercial

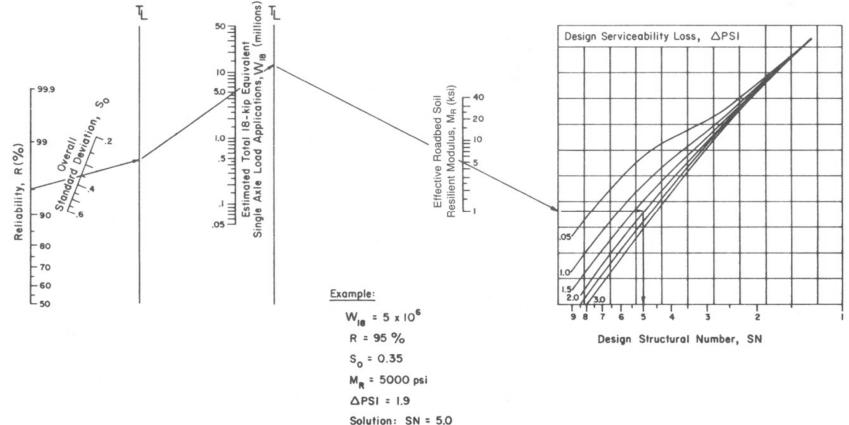
Design Inputs					
Work Type	User input (thickness - Inches)	Overlay, Mill & Fill, Rehab, Reconstruct 4			
Overlay		Overlay (user may input an override value) [also used with other work types]			
MillFill		Mill and fill (user should input what portion of AC remains after milling)			
Rehab	8.0	Rehab (assumes base will be stabilized 8 inches deep and will have stone base quality when done)			
Reconstruct	12.0	Reconstruct (assumes existing road will be removed to the subgrade) – user will be supply gravel thickness. 12 inches is recommended default			
Drainage Quality After			Good, Fair, Poor		

Horizontal Strain (microstrain)

Asphalt Horizontal Tensile Strain Criteria

E = E' for Asphalt Inst. and Shell equations


Typical Values of Young's Elastic Modulus and Poisson's Ratio for Pavement Materials


Material	Young's Elastic Modulus (E or M _r), psi	Poisson's Ratio (μ or ν)
Asphalt concrete 32 F (uncracked) 70 F 140 F	2,000,000 - 5,000,000 300,000 - 500,000 20,000 - 50,000	$\begin{array}{c} 0.25 - 0.30 \\ 0.30 - 0.35 \\ 0.35 - 0.40 \end{array}$
Portland cement concrete (uncracked)	3,000,000 - 5,000,000	0.15
Extensively cracked surfaces	Similar to granular base course materials	Similar to granular base course materials
Crushed stone base (clean, well-drained)	20,000 - 80,000	0.35
Crushed gravel base (clean, well-drained)	20,000 - 80,000	0.35
Uncrushed gravel base Clean, well-drained Clean, poorly-drained	10,000 - 60,000 3,000 - 15,000	0.35 0.40
Cement stabilized base Uncracked Badly cracked	500,000 - 2,000,000 40,000 - 200,000	0.20 0.30
Cement stabilized subgrade	50,000 - 500,000	0.20
Lime stabilized subgrade	20,000 - 150,000	0.20
Gravelly and/or sandy soil subgrade (drained)	10,000 - 60,000	0.40
Silty soil subgrade (drained)	5,000 - 20,000	0.42
Clayey soil subgrade (drained)	3,000 - 12,000	0.42
Dirty, wet, and/or poorly-drained materials	1,500 - 6,000	0.45 - 0.50
Intact Bedrock Note: Values greater than 500,000 have negligible influence on surface deflections.	250,000 - 1,000,000	0.20

Note: Exceptions to the typical values given above **often** occur. High fines contents and/or high moisture contents tend to reduce Young's modulus and increase Poisson's ratio. Unusually low fines contents and/or low moisture contents have the opposite effect. Poisson's ratio for a completely saturated material will be close to 0.50. Well-cured, asphalt emulsion stabilized gravel, and reclaimed asphalt pavements, will have moduli slightly less than asphalt concrete.

Class I	~	Class 7	
Motorcycles	200	Four or more axle, single unit	
Class 2 Passenger cars	e ⊥_ }>	. u	
	, 1		
	, 1	Class 8 Four or less axle,	
		single trailer	
Class 3 Four tire,			
single unit		Class 9 5-Axle tractor	
		semitrailer	
Class 4 Buses		Class 10 Six or more axle,	
		single trailer	
		Class II Five or less axle, multi trailer	
Class 5 Two axle, six		Class 12 Six axle, multi-	
tire, single unit		trailer	
		Class 13 Seven or more axle, multi-trailer	
Class 6 Three axle, single unit			
			

AASHTO '93

COMPREHENSIVE PAVEMENT DESIGN MANUAL

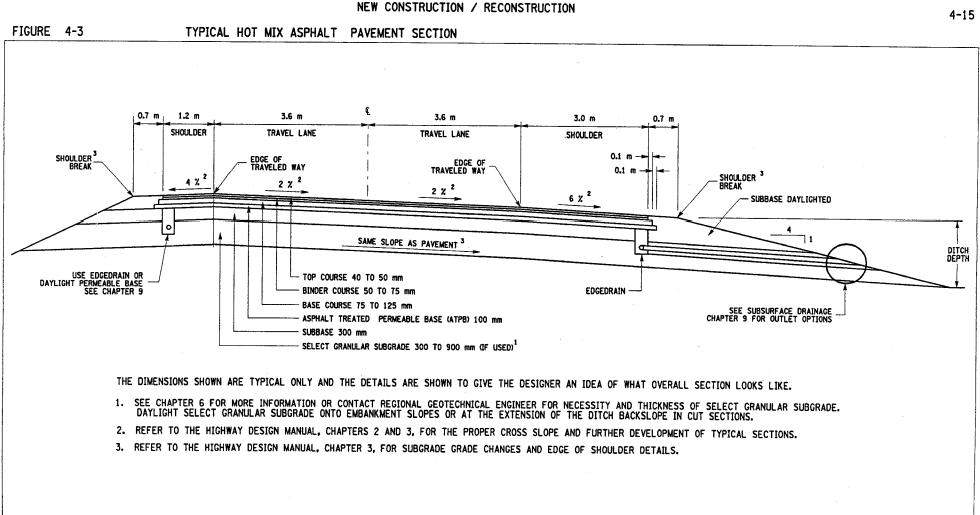
Design Division & Technical Services Division

New York State Department of Transportation

Annual Average	Percent Trucks Subbase Course (all Pavements)	Course	Portland Cement	Hot Mix Asph	alt Pavement
Daily Traffic AADT ¹			Concrete Pavement	Base Course	Top & Binder Courses Combined ²
Over	10 % or more		050	150 mm	
10,000 Vehicles	less than 10 %	300 mm	250 mm	125 mm	90 mm
6,000 to	10 % or more			125 mm	
10,000	less than 10 %	300 mm	225 mm	100 mm	90 mm
4,000 to 5,999	All	300 mm	Not Applicable	75 mm	90 mm
Under 4,000 Vehicles	All	300 mm	Not Applicable	75 mm	80 mm

 Table 4-1 Conventional Pavement Thickness Guide

¹ See Section 4.5.1.1.B for AADT definition.


² This is for SUPERPAVE HMA - see Chapter 6 of this manual for individual course thicknesses.

4.5 ESAL-BASED PAVEMENT DESIGN

ESAL-based pavement design is based on the American Association of State Highway and Transportation Officials (AASHTO) 1993 Guide for the Design of Pavement Structures, referred to in this manual as the 1993 AASHTO Pavement Design Manual. Equivalent single axle loads (ESAL) are used for determining pavement thickness and the design relies on using a treated opengraded permeable base layer with continuous edge drains in the pavement structure to provide positive drainage.

The key input variable in the ESAL-based design process is the anticipated amount of heavy truck traffic. The truck traffic is measured and converted to a number of 80 kN ESALs. Section 4.5.1 provides the steps for calculating ESALs using available NYSDOT traffic data.

The 1993 AASHTO Pavement Design Manual provides a reasonable methodology in designing for adequate structural capacity of the pavement structure. However, it neglects to account for lack of uniform support in the subgrade due to nonuniform, frost-susceptible soils, or to provide adequate support for construction equipment due to unstable subgrade soils. Numerous subgrade improvement methods have been used by NYSDOT in the past to account for these situations.

07/02/02

NEW CONSTRUCTION/RECONSTRUCTION

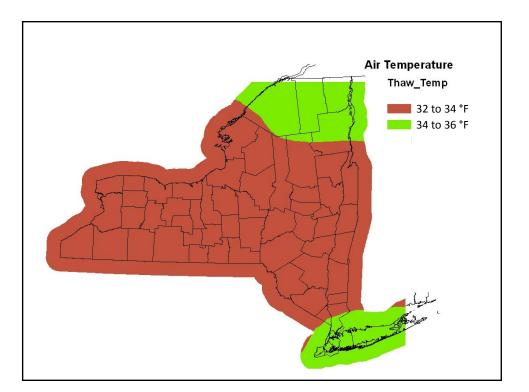
4.5.3.3 HMA Pavement Thickness

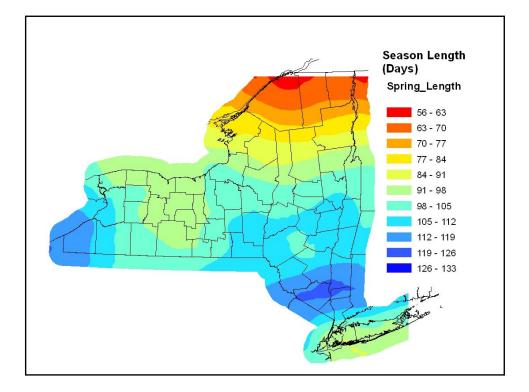
4-16

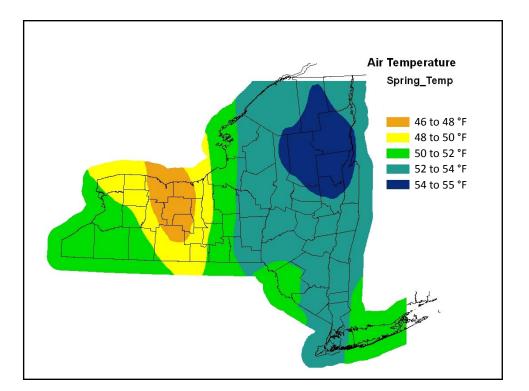
The pavement thickness for all lanes is dependent on the subgrade resilient modulus, M_r, and the amount of traffic in the driving lane (ESALs) and is given in Table 4-5 below. Contact the Regional Geotechnical Engineer to obtain the M_r design value, and also when site conditions would make it difficult to provide the required subbase course and/or select granular subgrade layer thicknesses.

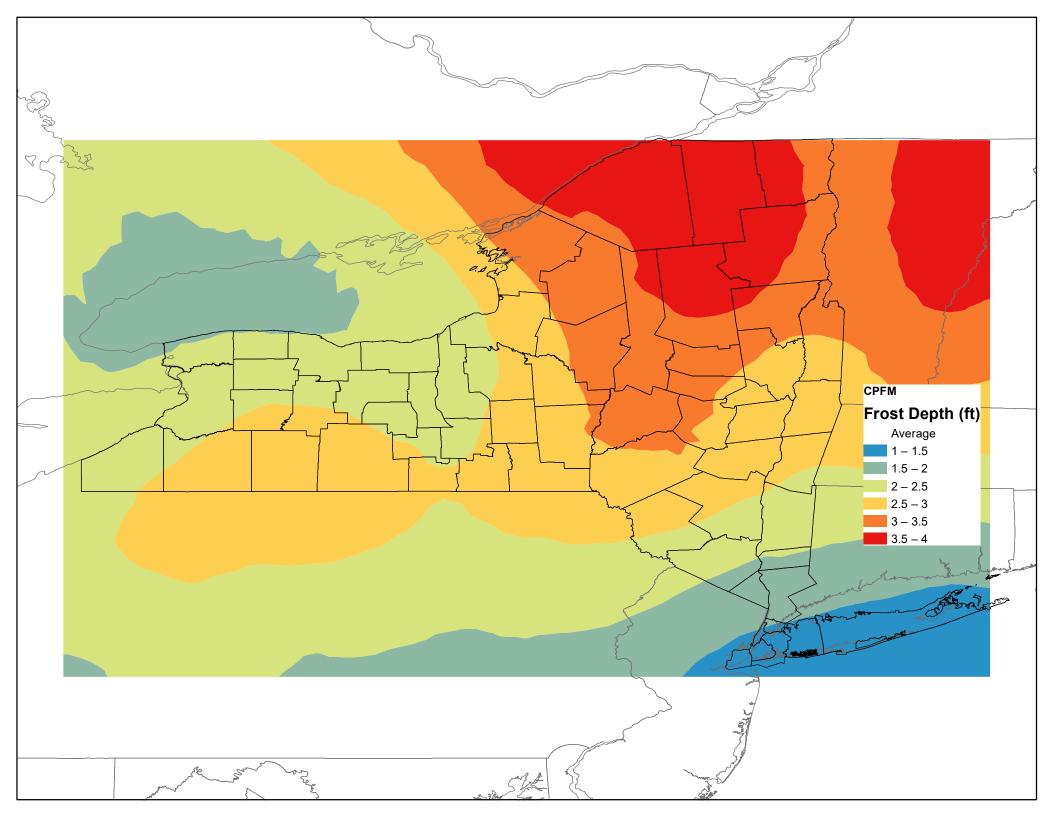
	M _r = 28 MPa			
80 kN ESALs over Design Life	Total HMA Thickness	Select Granular Subgrade Thickness		
millions	mm	mm		
ESALs ≤ 2	165	0		
2 < ESALs ≤ 4	175	0		
4 < ESALs ≤ 8	200	0		
8 < ESALs ≤ 13	225	0		
13 < ESALs ≤ 23	250	0		
23 < ESALs ≤ 45	250	150		
45 < ESALs ≤ 80	250	300		
80 < ESALs ≤ 140	250	450		
140 < ESALs ≤ 300	250	600		

M _r = 41 MPa				
80 kN ESALs over Design Life	Total HMA Thickness	Select Granular Subgrade Thickness		
millions	mm	mm		
ESALs ≤ 6	165	0		
6 < ESALs ≤ 11	175	0		
11 < ESALs ≤ 20	200	0		
20 < ESALs ≤ 35	225	0		
35 < ESALs ≤ 60	250	0		
60 < ESALs ≤ 110	250	150		
110 < ESALs ≤ 200	250	300		
200 < ESALs ≤ 300	250	450		


M _r = 55 MPa				
80 kN ESALs over Design Life	Total HMA Thickness	Select Granular Subgrade Thickness		
millions	mm	mm		
ESALs ≤ 12	165	0		
12 < ESALs ≤ 20	175	0		
20 < ESALs ≤ 40	200	0		
40 < ESALs ≤ 65	225	0		
65 < ESALs ≤ 115	250	0		
115 < ESALs ≤ 215	250	150		
215 < ESALs ≤ 300	250	300		


M _r = 34 MPa				
80 kN ESALs over Design Life	Total HMA Thickness	Select Granular Subgrade Thickness		
millions	mm	mm		
ESALs ≤ 4	165	0		
4 < ESALs ≤ 7	175	0		
7 < ESALs ≤ 13	200	0		
13 < ESALs ≤ 23	225	0		
23 < ESALs ≤ 40	250	0		
40 < ESALs ≤ 70	250	150		
70 < ESALs ≤ 130	250	300		
130 < ESALs ≤ 235	250	450		
235 < ESALs ≤ 300	250	600		


M _r = 48 MPa				
80 kN ESALs over Design Life	Total HMA Thickness	Select Granular Subgrade Thickness		
millions	mm	mm		
ESALs ≤ 8	165	0		
8 < ESALs ≤ 16	175	0		
16 < ESALs ≤ 30	200	0		
30 < ESALs ≤ 50	225	0		
50 < ESALs ≤ 85	250	0		
85 < ESALs ≤ 160	250	150		
160 < ESALs ≤ 300	250	300		


M _r = 62 MPa				
80 kN ESALs over Design Life	Total HMA Thickness	Select Granular Subgrade Thickness		
millions	mm	mm		
ESALs ≤ 15	165	0		
15 < ESALs ≤ 30	175	0		
30 < ESALs ≤ 50	200	0		
50 < ESALs ≤ 90	225	0		
90 < ESALs ≤ 150	250	0		
150 < ESALs ≤ 300	250	150		

NEW YORK STATE OF OPPORTUNITY.	Department of Transportation	Local Technical Assistance Program	<u> </u>