

Full Depth Reclamation NYSCHSA Winter Conference January 17, 2018

Todd Konifka & Fred Wickham Technical Sales Team Members The Gorman Group

- Presenter Information
 - Todd Konifka, The Gorman Group 29 years
 - Technical Sales Representative 17 years
 - Cold Mix Paving Crew supervisor
 - Knowledgeable in all Gorman Group processes
 - Fred Wickham, The Gorman Group, 16 years
 - Technical Sales Representative 16 years
 - Town Highway Superintendent, Westmoreland 11 years
 - Knowledgeable in all Gorman Group processes

Presentation Outline

- General Information Why Reclaim?
- Advantages
- Construction Process
- Mix Design Selection of Additive
- Candidate Selection
- Questions / Comments

Acknowledgements

Most Technical Information from:

- GEM-27
- Design and Construction Guidelines for Full Depth Reclamation of Asphalt Pavement
- NYSDOT Geotechnical Engineering Manual
 - August 2015, Revision #1

Full Depth Reclamation- General Info

- What is Full Depth Reclamation?
- A Pavement Rehabilitation technique that reuses existing materials
 - Per NYSDOT "a recycling method where all of the asphalt pavement section and a predetermined amount of underlying subbase material are treated to produce a stabilized base course."

Full Depth Reclamation - General Info

- Why use Full Depth Reclamation?
 - Rehabilitate existing pavement without reconstruction
 - Reuse valuable resources
 - More Cost Effective than Rehabilitation

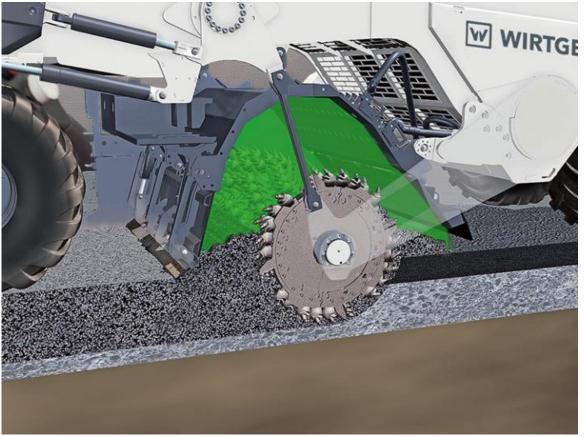
Full Depth Reclamation - Advantages

- Conserves aggregate and energy
- Converts existing pavement and subbase to new subbase
- Eliminates existing pavement defects
- Restores cross slope and crown
- Cost effective
- Service life up to 15 years
- No hauling materials except for additives under normal conditions

Full Depth Reclamation - Process

- Pulverization
- Introduction of Additive
- Compaction
- Application of wearing surface

Pulverization


Reclaimer

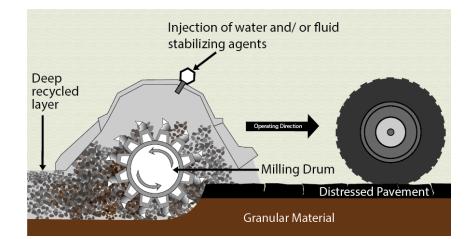
- 6 to 8 ft widths
- Up to 16 inch depths
- 400+ horsepower
- Average 25 ft/min

Reclaimer Schematic

Reclaimer – Wirtgen WR 2500

Reclaimer – Wirtgen WR 2400

Reclaimer – Terex RS 950


Reclaimer – Caterpillar RM300

Introduction of Additive

- Stabilizing additives introduced at metered rates in Milling Chamber
- Can be broadcast on road ahead of reclaimer

Grading and Compaction

First pass by Sheepsfoot Roller

- Followed by Grader
- Followed by Vibratory Roller

Grading and Compaction

- First pass by Sheepsfoot Roller
- Followed by Grader
- Followed by Vibratory Roller

Grading and Compaction

- First pass by Sheepsfoot Roller
- Followed by Grader
- Followed by Vibratory Roller

Application of Wearing Surface

- Hot Mix Asphalt NYSDOT 4 inches
- Chip Seal
 - Double
 - Triple

Videos

Show videos here

- Gorman
- Wirtgen

Mix Design – Candidate Selection

- Low Volume roads <2,000 AADT</p>
- Groundwater elevation
 - 2 ft below top of subbase, or
 - 1 ft below bottom of subgrade, whichever is lower

- Determine FDR Depth 4 to 12 inches
- Full depth cores 1.5 x FDR depth
 - 4 six inch cores per lane mile
- Adjust FDR depth if needed

Cores tested for:

- Moisture content
- Sieve analysis
- Hydrometer particle size analysis
- Liquid limit, plastic limit

Portland Cement

- Increases strength
- Best for granular and low plasticity subbase or subgrade
- More is not better

Lime

- Mitigates effect of reactive clay in base
- Reduces plasticity
- Aids in resisting water damage
- Increases tensile and compressive strengths

Calcium Chloride

- Lowers freezing point of reclaimed base
- Reduces freeze/thaw problems
- Increases load bearing capacity of base
- Used for gravels (no silt), well graded sand
- Can be added in 3 steps, primary, blending, secondary to seal the surface

Fly Ash

- Forms cementitious bond
- Increases impermeability and strength
- Spread with mechanical spreader and blended with reclaimer

Bituminous Materials

- Asphalt Emulsion or Foamed Asphalt
- Increases cohesion and load bearing capacity
- Used for gravels and well graded sand

- Choose additives based on Percent Passing No. 200 sieve and Soil Type
- Previous guidance plus Table 2 from NYSDOT GEM-27, Design and Construction Guidelines for Full Depth Reclamation of Asphalt Pavement

Percent Passing No.200	Plastic Index	Stablizer	Soil Type																												
			Granular Material								Silt-Clay Material																				
											LL<50			LL≥50																	
			Well- graded gravel GW A-1-a	Poorly graded gravel GP A-1-a	Silty gravel GM A-1-b	Clayey gravel GC A-1-b or A-2-6	Well- graded sand SW A-1-b	Poorly graded sand SP A-3 or A-1-b	Silty sand SM A-2-4 or A-2-5	Clayey sand SC A-2-6 or A-2-7	Silt, Silt with sand ML A-4 or A-5	Lean clay CL A-6	Organic silt/Organic lean clay OL A-4	Elastic silt MH A-5 or A-7-5	Fat clay, fat clay with sand CH A-7-5																
																<12	<6	Calcium Chloride													
																<25	<6	Bituminous	Sec. 201	12.10		Sec.	100								
<10	Cement				1.1.1	1.2.8																									
>10	Lime					-																									
>25	<10	Cement				122 3			122	ST.P.	2000																				
	10-30	Lime												and the second second																	
	>30	Lime+cement										No.																			

Table 2 Correlation of Stabilization Agent as a Function of Soil Type, Percent Passing No. 200 Sieve, and Plastic Index (Morian, et al., 2012)

Full Depth Reclamation - Cost - Options

- Relative Cost
 - Inexpensive \$1.50/sy + additives
- Options
 - No additives
 - Additives add \$1.00 to \$3.00/sy
 - Calcium Chloride, Portland Cement, Emulsion, Lime, Fly Ash
- Overlay
 - Double or Triple Chip Seal
 - Conventional HMA 3 to 4 inches in depth

- Typical Grinding Depth 6 to 9 inches
 - Depths of 12 to 16 inches possible
- Production Rates Average 25 ft/min
- Or, 1 to 1.5 lane miles per day

Improved

- Ride
- Cross Slope
- Structural Capacity

Full Depth Reclamation - Conditions for Use

- Pavement Evaluation Visual Inspection
 - Defects
 - Rutting, Cracking, Poor Cross-Slope -Etc.
 - Traffic Volume
 - Typically low to moderate volume
 - Pavement thickness any
 - Lane Width to accommodate equipment

Full Depth Reclamation

Questions?